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Surface anchoring energy and the � rst order Fréedericksz
transition of a NLC cell

YANG GUOCHEN*, SHI JIANRU and LIANG YING

Physics Institute of Hebei University of Technology, Tianjin 300130, PR China

(Received 5 July 1999; accepted 15 December 1999 )

Many authors have suggested new forms to describe the surface anchoring energy of the liquid
crystal–wall interface, replacing the Rapini-Papoular (RP) formula gs 5 (1/2)A sin2 h. If the
RP function is considered as the primary approximation, and a lowest order modi� cation is
included, then the surface anchoring energy can be represented by gs 5 (1/2)A sin2 h(1 1 f sin2 h).
f characterizes the modi� cation to the RP formula and varies for the diŒerent energy forms.
It is well known that the RP formula predicts a second order Fréedericksz transition. This
paper points out that the transition can be � rst order if the modi� cation is taken into account,
in which case at the threshold point the tilt angle of the director at the middle layer of the
cell, hm , is � nite. The conditions for the existence of the � rst order transition are obtained;
f < 0 is required for a � rst order transition. The approximate expression of the threshold � eld
is also given.

1. Introduction By this property of the second order transition, one can
calculate the threshold � eld as well as the saturationSurface eŒects of liquid crystals are important for

both device applications and basic understanding of � eld. This property also underlies the calculation of
surface eŒects and their applications.physical phenomena, and surface-induced alignment has

long been used to obtain a single crystalline layer of a The RP formula describes many eŒects successfully in
the presence of a surface. However, it is found that thenematic liquid crystal (NLC) for practical as well as

measurement purposes. To quantify how strongly a NLC results calculated from the RP formula do not agree
well with the experimental observations in some casesis oriented or anchored, the interfacial free energy g

s
,

also called anchoring energy, has been introduced. Rapini (for instance, the distortions of the director in strong
external � elds) [4]. Many authors have introduced newand Papoular have proposed a simple phenomenological

expression for the anchoring energy per unit area [1], anchoring energy forms to replace the RP formula.
Yang and Rosenblatt [5], Yang [6], Yokoyama and
van Sprang [7], and Barbero and Durand [8] expressgs 5

1
2

A sin2 h (1 )
g
s

in Legendre polynomial functions of sin h. Barbero
[9] expands gs into a Fourier series. Barnik [10] utilizeswhere h is the angle between the easy direction e and
the elliptic function of h as the functional form of gs .the director n of the NLC at the nematic–wall interface.

Because of these new forms of gs , we should reconsiderThis is the so-called RP formula. These, as well as many
the physical eŒects theoretically induced by a surface.other authors, have studied the director distribution
The most important eŒect is the in� uence of the newof a LC medium and the related physical phenomena
forms of gs on the Fréedericksz transition. In order tothrough continuum theory and have measured A in this
study the eŒects of all these diŒerent anchoring energyway [2]. Formula (1) states the boundary condition
forms in the same theoretical framework we make theon the nematic director. It is important to study the
following approximations : we assume that the primaryFréedericksz transition of a NLC cell in theory and
approximation of gs is the RP formula (1), and that thepractice. It can be strictly proved that when the anchor-
new form of g

s
is obtained by modifying (1). If the lowering energy takes the form of equation (1), only a second

order modi� cation only is included, then the modi� edorder transition will occur [3]. At the transition point,
gs can be expressed asthe director changes continuously with the external � eld.

g
s 5

1
2

A sin2 h(1 1 f sin2 h). (2)
*Author for correspondence; e-mail: yang–gc@hotmail.com

L iquid Crystals ISSN 0267-8292 print/ISSN 1366-5855 online © 2000 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
3
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



876 Y. Guochen et al.

Parameter f characterizes the modi� cation. For example, where h0 and h
l

are the values of h at z 5 0 and z 5 l,
respectively. Due to the symmetry of the system, weSonin [4] compared the diŒerent forms of gs by a

diagram where the RP form corresponds to the case of have h
0 5 h

l
. The Gibbs free energy of the system can

be written asf 5 0; f is negative in a Legendre polynomials expression,
and positive if expressed by Fourier series or the elliptic
function. In fact, g

s
is determined by the properties of G 5 S P l

0
C1

2
(k11 cos2 h 1 k33 sin2 h)Adh

dzB2

the interface and the liquid crystal: f can be positive
even expressed in Legendre polynomials. Yokoyama and
van Sprang [7] determined the form of g

s
by experiment, Õ

1
2

x
a
H2 sin2 hDdz 1 S[A sin2 h

0
(1 1 f sin2 h

0
)]

which gives f 5 Õ 0.22. Yang and Rosenblatt [5] give
f > 0. At present the anchoring energy form (2) or its (5)
equivalent forms have been accepted by most authors [11].

where S is the area of the substrate, k
11

, k
33

are the LCIn this paper we study the relationship between the
elastic splay and bend constants, and x

a
is the magneticenergy form and the Fréedericksz transition, and prove

anisotropy of the NLC medium. Applying the calculusthat when f < 0 the transition could be of � rst order. At the
of variations of G yields [14]transition point, the director changes discontinuously.

The tilt angle h
m

in the middle layer of the LC medium
jumps from 0 to a � nite value. Conditions for � rst order (k11 cos2 h 1 k33 sin2 h)

d2h

dz2behaviour are given.
For a � rst order transition, the formula of the threshold

1 sin h cos h(k33
Õ k11)Adh

dzB2
1 xaH2 sin h cos h 5 0� eld given in [1] is not valid. We have developed an

approximate expression of the threshold � eld valid when
the critical value of hm is small. (6)

First order LC texture transitions have received a
and the boundary conditionsgreat deal of attention. It is known that optical � elds

can induce � rst order transitions [12]. External electric
(k11 cos2 h0 1 k33 sin2 h0 )Adh

dzB
z=0

and magnetic � elds applied together to the cell, one to
stabilize, the other to drive the director, can also induce
a � rst order transition [13]. Now we point out that by 5 A sin h0 cos h0 (1 1 2f sin2 h0 ). (7)
means of surface anchoring one can induce a � rst order

Equations (6) and (7) can determine h(z) completely.transition also, with only a d.c. magnetic � eld or d.c.
Now we discuss the solution of equation (6 ) with theelectric � eld. This is important not only for under-

boundary condition (7). Obviously there exist two trivialstanding the surface eŒects but also for the practical
solutionsapplication (for example, the design and study of storage

liquid crystal displays). h(z) ; 0, for all z (8)

2. Fundamental equations
h(z) ;

p

2
, for all z. (9)We consider a nematic liquid crystal cell of thickness

l. An external magnetic � eld H is applied to the LC
In addition, there is also a non-trivial solution whichmedium perpendicular to the substrates. Assuming the
satis� estwo substrates are identical, the easy direction e in both

substrates is the same and parallel to the substrate plane.
We establish Cartesian coordinate zÃ axis perpendicular

d

dzC(k11 cos2 h 1 k33 sin2 h)Adh

dzB2
1 xaH2 sin2 hD 5 0.

to the substrates with the two substrates lying in the
z 5 0 and z 5 l planes, respectively. Suppose e is parallel (10)
to the x axis. The tilt angle of n at position (x, z) is a

From equation (10) we obtainfunction of z and is denoted by h(z).
If the anchoring energy takes the form of equation (2),

then at z 5 0 and z 5 l we have dh

dz
5 HCx

a
(sin2 h

m
Õ sin2 h)

k11(1 1 g sin2 h) D1/2
(11)

gs 5
1
2

A sin2 h0 (1 1 f sin2 h0 ) (3 )
where hm is the value of h at the z 5 l/2 plane, and

g 5
k
33

Õ k
11

k
11

. (12)g
s 5

1
2

A sin2 h
l
(1 1 f sin2 h

l
) (4 )
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877First order Fréedericksz transition

Equation (11) is a diŒerential equation of h, which can The above formulae can be re-expressed using u.
De� ning another variablebe transformed to an integral equation

n 5
sin2 h

sin2 h
m

, An
0 5

sin2 h0
sin2 h

m
B (19)H 5

2
l Ak11

xa
B1/2P hm

h0
A 1 1 g sin2 h

sin2 hm
Õ sin2 hB1/2

dh. (13)

equations (13) and (14) transform to
The boundary condition (7) can be expressed as

H 5
2
l Ak11

x
a
B1/2P l

n0

1
2[n(1 Õ n)]1/2A1 1 gun

1 Õ un B1/2
dn (20)

H 5
A

(xak11)1/2
sin h0 cos h0 (1 1 2f sin2 h0 )

[ (1 1 g sin2 h0 )(sin2 hm
Õ sin2 h0 )]1/2

.

H 5
A

(x
a
k
11

)1/2A n
0

1 Õ n
0
B1/2A 1 Õ un

0
1 1 gun

0
B1/2

(1 1 2fun
0
).(14)

(21)We have seen that equation (6) has three solutions

with boundary condition (7). Solution (8) means the It is well known that the threshold � eld in case of
director keeps the initial undisturbed spatial distribution. rigid anchoring is H0c 5 p/l(k11/xa )1/2, so de� ning the
Solution (9) implies that the system reaches saturation. reduced � eld
Equations (11) or (13) correspond to the disturbed
distribution of the director. Under the same applied h 5

H

H0c
(22)

external � eld, the most stable solution is the one with
the smallest free energy among the three solutions.

equation (20) can be expressed as
Denoting the free energy corresponding to the three
solutions (8), (9 ) (11) by G0 , G

p/2 and Gh, then
h 5

2
p P l

n0

1
2[n(1 Õ n)]1/2A1 1 gun

1 Õ un Bdn. (23)

G
0
; 0 for all H (15)

De� ning the reduced anchoring strength†

G
p/2 5 SC Õ

l

2
xaH2 1 A(1 1 f)D (16)

a 5
Al

2k
11

(24)

Gh 5 SC l
2

x
a
H2 sin2 h

m
Õ P l

0
x
a
H2 h dz equation (14) can be represented as

h 5
2
p

aA n0
1 Õ n0

B1/2A 1 Õ un0
1 1 gun0

B1/2
(1 1 2fun0 ). (25)

1 A sin2 h0(1 1 f sin2 h0 )D . (17)

The Gibbs free energy can be represented as
Generally, when the applied external � eld begins

to increase from zero, G0 will be the � rst smallest Gh 5 S
2k11

l
u[(I21

Õ 2I1I2 ) 1 an0 (1 1 fun0 )]
solution; solution (8) is the most stable. Then when H
increases to some value denoted by Hth , Gh will become where
the smallest for H > H

th
, and solution (11) becomes the

most stable equilibrium. Hth is the so-called threshold I1 5 P l

n0

1

2[n(1 Õ n)]1/2A1 1 gun

1 Õ un B1/2
dn

� eld. Lastly, when H increases to another special value

denoted by Hsat , G
p/2 would become the smallest value

for H > H
sat

, and solution (9) becomes most stable. H
sat I2 5 P l

n0

n

2[n(1 Õ n)]1/2A1 1 gun

1 Õ un B1/2
dn.

is the so-called saturation � eld. We can see that Hth is
determined by Gh 5 G0 . De� ning the reduced free energy

To determine the order of the Fréedericksz transition
we introduce a new parameter G 5

lGh

2k11S
5 u[(I21

Õ 2I1I2 ) 1 an0 (1 1 fun0 )] (26)

u 5 sin2 hm . (18)
G is a function of u, and can be denoted by G (u).

For solution (8), u 5 0; for solution (9), u 5 1; and for

solution (11), 0 < u < 1. u is equivalent to the order
parameter in Landau–de Gennes theory, see the work †Becker, M. E., et al. proposed a similar parameter

l 5 pk11/Al: obviously a 5 (p/2)(1/l) [15].by Frisken and PalŒy Muhouray [13].
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878 Y. Guochen et al.

By means of equations (23), (25), (26) we can study
the Fréedericksz transition. For a given u, from (23) and
(25) we can solve n

0
and H, if we solve u and n

0
for a

given applied external � eld H. From equation (26) we
can obtain G for a given u. Denoting u at the threshold
point by uc , then

G (u
c
) 5 0. (27)

From equation (27) uc is determined. If uc 5 0 the
transition is second order, otherwise if uc Þ 0 it is � rst
order. Equations (23), (25), (26) and (27) underpin the
discussions of the Fréedericksz transition.

3. Numerical calculations
Equations (23), (25) and (26) can be solved numerically.

Combining (23) with (25) results in

aA n0
1 Õ n0

B1/2A 1 Õ un0
1 1 gun0

B1/2
(1 1 2fun0 )

Figure 1. The function n0 (u) for diŒerent values of f with
a 5 0.1, k33 5 1.25k11 (refer to MBBA). n0 5 sin2 h0/sin2 hm ,
u 5 sin2 hm .5 P l

n0

1
2[n(1 Õ n)]1/2A1 1 gun

1 Õ un B1/2
dn (28)

which de� nes the implicit function n0(u). Substituting
n0 (u) into (25) and (26) yields h (u) and G (u), respectively.
uc is determined by G (u) 5 0. The threshold � eld results
from H

th 5 H0c
h (u

c
). The order of the Fréedericksz

transition depends on the zero or non-zero value of uc .
Taking MBBA (4-methoxybenyl idene-4¾ -n-butylaniline)

for example, we can develop our numerical results. The
elastic constants [16], k11 5 5.8 Ö 10 Õ 12 N, k33/k11#
1.25; the anchoring strength [17], A# 2 Ö 10 Õ 7 J m Õ 2.
Suppose the cell thickness l 5 5.8 mm, then a 5 0.1. In
our study we are seeking the in� uence of f on the
Fréedericksz transition, so a set of typical value f 5 Õ 0.2,
0, 0.2 is chosen for comparison. The results are illustrated
in � gures 1–4.

Figure 1 shows that n
0

is a single-valued function of
u. The curve of f 5 Õ 0.2 is uppermost in the diagram
as expected.

Figure 2 shows the dependence of h on u. h increases
monotonically with u in cases f 5 0, 0.2. But for f 5 Õ 0.2,

Figure 2. Function h(u) for diŒerent values of f with a 5 0.1,
h � rst decreases then increases with u. We see one h k33 5 1.25k11 .
value may correspond to two diŒerent u values; i.e.
equations (23) and (25) may possess two sets of solution

Figure 4 shows the dependence of G on h. From G (u)[u(1), n(1)0 ], [u(2), n(2)0 ] for a given h.
and h (u) we could plot the G (h) curves. Denoting (h)

u=0Figure 3 shows the dependence of G on u. All the
by h0th , in curves for f 5 0, 0.2, h0th 5 0.26, G < 0 forthree curves are tangential to the horizontal axis G 5 0
h > 0.26; so h0th is just the reduced threshold � eld. In § 5at u 5 0. Curves for f 5 0, 0.2 begin to descend at u 5 0,
we will show that h0th satis� eswhich implies G < 0 for u > 0. So u

c 5 0, and they
are second order transitions. The curve for f 5 Õ 0.2

cot Ap

2
h0thB 5

p

2a
h0thdistinguishes itself by � rst rising, then falling and inter-

secting the horizontal axis G 5 0 at u 5 0.35, which
implies G < 0 for u > 0.35. So uc 5 0.35, and it is a � rst which is the widely used equation to evaluate the

threshold � eld [18]. The curve for f 5 Õ 0.2 intersectsorder transition.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
3
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



879First order Fréedericksz transition

be single-valued of u. That is why we introduce the
parameter u in this approach.

We have discussed only an example; the condition for
� rst order transition needs more general analysis.

4. The condition for the � rst order transition
From the preceding numerical results, we see that under

some conditions the � rst order Fréedericksz transition
may occur. In this section we will determine these
conditions.

Frisken and PalŒy-Muhoray [13] expanded the Gibbs
free energy diŒerence into a series up to the sixth order
with respect to the order parameter hm when they studied
the eŒects of perpendicular electric and magnetic � elds
on a liquid crystal sample. We adopt u 5 sin2 h

m
as the

order parameter; similarly G (u) can be expressed as

G (u) 5 A u 1
1
2

B u2 1
1
3

Cu3 1 O(u4 ). (29)

Figure 3. Order parameter u versus reduced Gibbs free energy
G for diŒerent f with a 5 0.1, k33 5 1.25k11 . On the other hand, the Taylor expansion of G (u) at

u 5 0 is

G (u) 5 G (0) 1 uG ¾ (0) 1
u2
2!

G ² (0) 1
u3
3!

G ¾ ¾ ¾ (0) 1 O (u4 ).

(30)

Obviously, we have

A 5 G ¾ (0), B 5 G ² (0), C 5
1
2

G ¾ ¾ ¾ (0). (31)

Now we calculate the derivatives of G (u) at u 5 0,
denoting V0 5 (n0 )

u=0
. From equation (28) we obtain

aA V0
1 Õ V

0
B1/2

5 arc cos (V
0
)1/2 (32)

Introducing the parameter b
0

in

V0 5 cos2 b0 (33)

then b0 satis� es‡
Figure 4. Magnetic � eld h versus the reduced Gibbs free

a 5 b0 tan b0 (34)energy G for diŒerent values of f with a 5 0.1, k33 5
1.25k11 . The unit of h is (p/l )(k11/xa)1/2. The dashed line

which shows that V
0

is only a function of a, irrespective
means that the corresponding deformed state is less stable

of f, see � gure 5.than that of the initial uniform state. P1 5 (0.20, 0.00),
Taking the � rst order u derivative in equation (28) atP2 5 (0.26, 0.00).

u 5 0, we obtain

the horizontal axis G 5 0 at two points P1 and P2 , which Adn
0

du B 5 Ck

2
1 a(k Õ 4f)

V
0

1 1 a Õ V0
DV0 (1 Õ V0 )correspond to [h 5 0.20, u 5 0.35] and [h 5 0.26, u 5 0],

respectively. For the solid line beginning at P
1
, G < 0;

(35)for the dashed line between P1 and P2 , G > 0. So P1
corresponds to the threshold point, and hth 5 0.20,
uc 5 0.35. hth does not satisfy equation (28) of course. ‡In the literature [Sugimura, A., Luckhurst, G. R., and

The above discussions indicate that G may not be a Ou-Yang Zhong-can, 1995, Phys. Rev. E, 52, 681] a0 is de� ned
by sin h00 5 sin hm sin a0; here b0 is equivalent to p/2 Õ a0 [19].single-valued function of the external � eld H, but must
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880 Y. Guochen et al.

where k 5 1 1 g 5 k33/k11. From (26), through the usual
diŒerential calculation and using equations (32) and
(35), we can obtain

G (0) 5 0, A 5 G ¾ (0) 5 0,

B 5 G ² (0) 5 2aV
0Ck

8 A2V
0

Õ 1 Õ
a

1 Õ V
0
B Õ fV

0D (36)

C 5
1
2

G ¾ ¾ ¾ (0) 5
3
2

a

(1 Õ V0 1 a)2
V0

(1 Õ V0 )
(c0 1 c1f 1 c2f2 )

(37)

where

c0 5 Õ
k

8
(2 1 kV0 )b3 1

kV0
24

[(25k Õ 4) 1 (20 Õ 17k)V0

Õ 16(1 1 2k)V 20 1 24kV 30]b2

Figure 5. Reduced surface anchoring strength a versus V0 ,1
k2V 20

8
(Õ 8 1 27V0

Õ 26V 20 1 8V 30 )b (38)
where a 5 Al/2k11 , V0 5 (n0 )

u=0
.

order transition isc1 5
kV0
2

b3 1
kV0
2

(Õ 7 Õ 5V0 1 28V 20
Õ 16V 30 )b2

B < 0 (44)

1
kV 20

2
(16 Õ 51V0 1 50V 20

Õ 16V 30 )b (39) Not being second order, implies � rst order§, so the
condition for the � rst order transition is

c
2 5 16V 20

(1 Õ V
0
)2ab (40)

B > 0. (45)
b 5 1 Õ V0 1 a.

From equation (36) we obtain the condition for the � rst
Finally we obtain G (u) up to u3, order transition

f

k
< Õ

1
8

a 1 (1 Õ V0 ) (1 Õ 2V0 )
V0 (1 Õ V0 )

. (46)G (u) 5
1
2

B u2 1
1
3

Cu3. (41)

Because V0 is a function of a, equation (46) dependsNow we discuss the Fréedericksz transition.
only on the LC and surface parameters a, f, k, as follows:Equation (29) is analogous to expression (10) appearing

in [13], but they underlie two diŒerent approaches.
(i ) f must be negative. From equations (34) and (35)

Landau phenomenological theory was used in [13]; the
we obtain a 1 (1 Õ V0 ) (1 Õ 2V0 ) 5 1/4 tan b0 Ö

order parameter h
m

in expression (10) of [13] did not
(4b0

Õ sin 4b0 ) > 0; the f satisfying (46) must be
minimize the free energy, while in this paper the order

negative.
parameter u has minimized the free energy already. In

(ii ) The � rst order transition occurs only when a is
our approach h satis� es equations (6), (7), and the

small. Figure 5 gives the V
0
~ a curve. Figure 6

critical order parameter results from G (u) 5 0. From
shows the relation between Õ f/k and a. We

(4.13), the equation G (u) 5 0 has two solutions
see that the diagram is divided into two parts;
the left part is the � rst order transition zone, theu

1 5 0 (42)
right part is the second order zone. Generally

u2 5 Õ 3B /2C. (43) |f| < 1, and k 5 k
33

/k
11 > 1 for most liquid crystals,

so |f|/k is about 0.1~ 1; a is required to be 0.1~ 1Generally, (i) if G (u) < 0 for u > 0, the transition is
for a possible � rst order transition.second order, and occurs at u 5 u

1 5 0; (ii ) if G (u) > 0
for 0 < u < u2 , G (u) < 0 for u > u2 , then the transition is

§There are two kinds of � rst order transitions: (1) from the� rst order, occurring at u 5 u2 Þ 0. In the series expansion
uniform solution h 5 0 to the deformed solution when

of G (u) only two terms are left; they are relatively 0 < u2 < 1, (2) from the uniform solution directly to another
accurate for small u, suitable for analysing the second uniform solution h 5 p/2 when u2 > 1, this is the case for very

small a.order transition. Obviously the condition for the second

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
3
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



881First order Fréedericksz transition

Eliminating a by a 5 b0 tan b0 results in b0 5
(p/2)h0th , then substituting into a 5 b0 tan b0 yields

cot Ap

2
h0thB 5

1
a

p

2
h0th

(50)

which is in agreement with [17].
(2) For the � rst order transition, if u

c
is small, then

uc# 2B /(2C), applying equation (36),

hth 5 h0thC1 1
3(1 Õ V0 )

a(1 1 a Õ V0 )V0
B 2/CD . (51)

Because C < 0, then

hth < h0th (52)

Figure 7 shows the curve of h
th

/h0th
versus f.

6. Discussion and conclusion
We have studied the � rst order Fréedericksz transition

Figure 6. Fréedericksz phase diagram. Surface and material
of a NLC cell by adopting surface anchoring energy (2),

parameters a, f, k determine the Fréedericksz order
and concluded that the � rst order transition is possiblecompletely in this diagram.
only for f < 0. If we plot g

s
vs. h diagrams for f > 0,

f 5 0, f < 0, respectively, the � rst curve is most steep,
the third is least steep. This shows that if the gs vs. h

(iii) If the surfaces of the NLC cell substrates are curve is more slowly varying than that of the RP
homeotropically aligned (ed zÃ ) initially, the external formula, the � rst order transition would be possible.
� eld is applied parallel to xÃ , as in the case studied The conclusion can be generalized to other more
by Yang and Rosenblatt [5]; then the new formulae general forms of g

s
. Taking the RP formula as a referred

can be obtained only by swapping k11 and k33 standard, if the g
s

vs. h curve is less steep than that of
correspondingly. In this case k 5 k

11
/k

33 < 1 for the RP formula, then the existence of the � rst order
most liquid crystals, and the � rst order transition transition would be possible.
can be realized more easily.

5. Approximate expression of the threshold � eld
This section gives the approximate expression of the

threshold � eld.
Expanding equation (25) up to u yields an approximate

expression for h:

h 5
2
p

aA V0
1 Õ V0

B1/2G1 Õ 2
1 Õ V0

1 1 a Õ V0

Ö Ck

8 A2V0
Õ 1 Õ

a

1 Õ V0
B Õ fV0DuH (47)

We can now discuss the threshold � eld.

(1) for the second order transition, uc 5 0, then

hth 5 h0th 5
2

p
aA V

0
1 Õ V0

B1/2
. (48)

Applying V0 5 cos2 b0 in the above equation, we
have Figure 7. f versus ratio of hth to h0th with a 5 1.55, k 5 1.2.

The solid line is the solution from the numerical calcu-
lation, the dashed line is the approximation usingh0th 5

2
p

a cos b
0
. (49)

equation (5.1); the diŒerence is about 1%.
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[9] Barbero, G., Madhusudana, N. V., and Durand, G.,At present, weak anchoring is obtained experimentally
1984, Z. Naturforsch., 39A, 1066; Barbero, G.,in two ways [4]: (1) using a layer of SiO or some kind
Madhusudana, N. V., Palierne, J. F., and Durand, G.,

of organic compound; (2) by rubbing the surface of the 1984, Phys. L ett., 103A, 385.
substrate. The diŒerent surface treatments and diŒerent [10] Barnik, M. I., Blinov, L. M., Korkishko, T. V.,

Umansky, B. A., and Chigrinov, V. G., 1983, Zh. eksp.liquid crystals make the form of gs diŒerent, so the
teor. Fiz., 85, 176.adoption of a suitable weak anchoring technique may
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